\(\int \frac {\cos (e+f x)}{(a+b \sec ^2(e+f x))^{5/2}} \, dx\) [286]

   Optimal result
   Rubi [A] (verified)
   Mathematica [F]
   Maple [C] (warning: unable to verify)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 349 \[ \int \frac {\cos (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=-\frac {2 b (3 a+2 b) \sin (e+f x)}{3 a^2 (a+b)^2 f \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}-\frac {b \cos ^2(e+f x) \sin (e+f x)}{3 a (a+b) f \left (a+b-a \sin ^2(e+f x)\right ) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}+\frac {\left (3 a^2+13 a b+8 b^2\right ) E\left (\arcsin (\sin (e+f x))\left |\frac {a}{a+b}\right .\right ) \left (a+b-a \sin ^2(e+f x)\right )}{3 a^3 (a+b)^2 f \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )} \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}-\frac {b (9 a+8 b) \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),\frac {a}{a+b}\right ) \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}{3 a^3 (a+b) f \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}} \]

[Out]

-2/3*b*(3*a+2*b)*sin(f*x+e)/a^2/(a+b)^2/f/(sec(f*x+e)^2*(a+b-a*sin(f*x+e)^2))^(1/2)-1/3*b*cos(f*x+e)^2*sin(f*x
+e)/a/(a+b)/f/(a+b-a*sin(f*x+e)^2)/(sec(f*x+e)^2*(a+b-a*sin(f*x+e)^2))^(1/2)+1/3*(3*a^2+13*a*b+8*b^2)*Elliptic
E(sin(f*x+e),(a/(a+b))^(1/2))*(a+b-a*sin(f*x+e)^2)/a^3/(a+b)^2/f/(cos(f*x+e)^2)^(1/2)/(sec(f*x+e)^2*(a+b-a*sin
(f*x+e)^2))^(1/2)/(1-a*sin(f*x+e)^2/(a+b))^(1/2)-1/3*b*(9*a+8*b)*EllipticF(sin(f*x+e),(a/(a+b))^(1/2))*(1-a*si
n(f*x+e)^2/(a+b))^(1/2)/a^3/(a+b)/f/(cos(f*x+e)^2)^(1/2)/(sec(f*x+e)^2*(a+b-a*sin(f*x+e)^2))^(1/2)

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 349, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {4233, 1985, 1986, 424, 540, 538, 437, 435, 432, 430} \[ \int \frac {\cos (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=-\frac {b (9 a+8 b) \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),\frac {a}{a+b}\right )}{3 a^3 f (a+b) \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}}-\frac {2 b (3 a+2 b) \sin (e+f x)}{3 a^2 f (a+b)^2 \sqrt {\sec ^2(e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}}+\frac {\left (3 a^2+13 a b+8 b^2\right ) \left (-a \sin ^2(e+f x)+a+b\right ) E\left (\arcsin (\sin (e+f x))\left |\frac {a}{a+b}\right .\right )}{3 a^3 f (a+b)^2 \sqrt {\cos ^2(e+f x)} \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}} \sqrt {\sec ^2(e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}}-\frac {b \sin (e+f x) \cos ^2(e+f x)}{3 a f (a+b) \left (-a \sin ^2(e+f x)+a+b\right ) \sqrt {\sec ^2(e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}} \]

[In]

Int[Cos[e + f*x]/(a + b*Sec[e + f*x]^2)^(5/2),x]

[Out]

(-2*b*(3*a + 2*b)*Sin[e + f*x])/(3*a^2*(a + b)^2*f*Sqrt[Sec[e + f*x]^2*(a + b - a*Sin[e + f*x]^2)]) - (b*Cos[e
 + f*x]^2*Sin[e + f*x])/(3*a*(a + b)*f*(a + b - a*Sin[e + f*x]^2)*Sqrt[Sec[e + f*x]^2*(a + b - a*Sin[e + f*x]^
2)]) + ((3*a^2 + 13*a*b + 8*b^2)*EllipticE[ArcSin[Sin[e + f*x]], a/(a + b)]*(a + b - a*Sin[e + f*x]^2))/(3*a^3
*(a + b)^2*f*Sqrt[Cos[e + f*x]^2]*Sqrt[Sec[e + f*x]^2*(a + b - a*Sin[e + f*x]^2)]*Sqrt[1 - (a*Sin[e + f*x]^2)/
(a + b)]) - (b*(9*a + 8*b)*EllipticF[ArcSin[Sin[e + f*x]], a/(a + b)]*Sqrt[1 - (a*Sin[e + f*x]^2)/(a + b)])/(3
*a^3*(a + b)*f*Sqrt[Cos[e + f*x]^2]*Sqrt[Sec[e + f*x]^2*(a + b - a*Sin[e + f*x]^2)])

Rule 424

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a*d - c*b)*x*(a + b*x^n)^(
p + 1)*((c + d*x^n)^(q - 1)/(a*b*n*(p + 1))), x] - Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)
^(q - 2)*Simp[c*(a*d - c*b*(n*(p + 1) + 1)) + d*(a*d*(n*(q - 1) + 1) - b*c*(n*(p + q) + 1))*x^n, x], x], x] /;
 FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, n, p, q
, x]

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 538

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c]))))))

Rule 540

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[(
-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*b*n*(p + 1))), x] + Dist[1/(a*b*n*(p + 1)), Int[(a + b*x
^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(b*e*n*(p + 1) + b*e - a*f) + d*(b*e*n*(p + 1) + (b*e - a*f)*(n*q + 1))
*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && GtQ[q, 0]

Rule 1985

Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u*((b + a*c + a*d*x^n)/(c + d*x^n))^p
, x] /; FreeQ[{a, b, c, d, n, p}, x]

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rule 4233

Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fr
eeFactors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + b/(1 - ff^2*x^2)^(n/2))^p/(1 - ff^2*x^2)^((m + 1)/2), x
], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] &&  !IntegerQ
[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{\left (a+\frac {b}{1-x^2}\right )^{5/2}} \, dx,x,\sin (e+f x)\right )}{f} \\ & = \frac {\text {Subst}\left (\int \frac {1}{\left (\frac {a+b-a x^2}{1-x^2}\right )^{5/2}} \, dx,x,\sin (e+f x)\right )}{f} \\ & = \frac {\sqrt {a+b-a \sin ^2(e+f x)} \text {Subst}\left (\int \frac {\left (1-x^2\right )^{5/2}}{\left (a+b-a x^2\right )^{5/2}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}} \\ & = -\frac {b \cos ^2(e+f x) \sin (e+f x)}{3 a (a+b) f \left (a+b-a \sin ^2(e+f x)\right ) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}-\frac {\sqrt {a+b-a \sin ^2(e+f x)} \text {Subst}\left (\int \frac {\sqrt {1-x^2} \left (-3 a-b+(3 a+4 b) x^2\right )}{\left (a+b-a x^2\right )^{3/2}} \, dx,x,\sin (e+f x)\right )}{3 a (a+b) f \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}} \\ & = -\frac {2 b (3 a+2 b) \sin (e+f x)}{3 a^2 (a+b)^2 f \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}-\frac {b \cos ^2(e+f x) \sin (e+f x)}{3 a (a+b) f \left (a+b-a \sin ^2(e+f x)\right ) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}-\frac {\sqrt {a+b-a \sin ^2(e+f x)} \text {Subst}\left (\int \frac {-((a+b) (3 a+4 b))+\left (3 a^2+13 a b+8 b^2\right ) x^2}{\sqrt {1-x^2} \sqrt {a+b-a x^2}} \, dx,x,\sin (e+f x)\right )}{3 a^2 (a+b)^2 f \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}} \\ & = -\frac {2 b (3 a+2 b) \sin (e+f x)}{3 a^2 (a+b)^2 f \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}-\frac {b \cos ^2(e+f x) \sin (e+f x)}{3 a (a+b) f \left (a+b-a \sin ^2(e+f x)\right ) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}-\frac {\left (b (9 a+8 b) \sqrt {a+b-a \sin ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {a+b-a x^2}} \, dx,x,\sin (e+f x)\right )}{3 a^3 (a+b) f \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}+\frac {\left (\left (3 a^2+13 a b+8 b^2\right ) \sqrt {a+b-a \sin ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {\sqrt {a+b-a x^2}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 a^3 (a+b)^2 f \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}} \\ & = -\frac {2 b (3 a+2 b) \sin (e+f x)}{3 a^2 (a+b)^2 f \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}-\frac {b \cos ^2(e+f x) \sin (e+f x)}{3 a (a+b) f \left (a+b-a \sin ^2(e+f x)\right ) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}+\frac {\left (\left (3 a^2+13 a b+8 b^2\right ) \left (a+b-a \sin ^2(e+f x)\right )\right ) \text {Subst}\left (\int \frac {\sqrt {1-\frac {a x^2}{a+b}}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 a^3 (a+b)^2 f \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )} \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}-\frac {\left (b (9 a+8 b) \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1-\frac {a x^2}{a+b}}} \, dx,x,\sin (e+f x)\right )}{3 a^3 (a+b) f \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}} \\ & = -\frac {2 b (3 a+2 b) \sin (e+f x)}{3 a^2 (a+b)^2 f \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}-\frac {b \cos ^2(e+f x) \sin (e+f x)}{3 a (a+b) f \left (a+b-a \sin ^2(e+f x)\right ) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}+\frac {\left (3 a^2+13 a b+8 b^2\right ) E\left (\arcsin (\sin (e+f x))\left |\frac {a}{a+b}\right .\right ) \left (a+b-a \sin ^2(e+f x)\right )}{3 a^3 (a+b)^2 f \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )} \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}-\frac {b (9 a+8 b) \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),\frac {a}{a+b}\right ) \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}{3 a^3 (a+b) f \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}} \\ \end{align*}

Mathematica [F]

\[ \int \frac {\cos (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\cos (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx \]

[In]

Integrate[Cos[e + f*x]/(a + b*Sec[e + f*x]^2)^(5/2),x]

[Out]

Integrate[Cos[e + f*x]/(a + b*Sec[e + f*x]^2)^(5/2), x]

Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 7.61 (sec) , antiderivative size = 20403, normalized size of antiderivative = 58.46

method result size
default \(\text {Expression too large to display}\) \(20403\)

[In]

int(cos(f*x+e)/(a+b*sec(f*x+e)^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [F]

\[ \int \frac {\cos (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\cos \left (f x + e\right )}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(f*x + e)^2 + a)*cos(f*x + e)/(b^3*sec(f*x + e)^6 + 3*a*b^2*sec(f*x + e)^4 + 3*a^2*b*sec(f*
x + e)^2 + a^3), x)

Sympy [F]

\[ \int \frac {\cos (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\cos {\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(cos(f*x+e)/(a+b*sec(f*x+e)**2)**(5/2),x)

[Out]

Integral(cos(e + f*x)/(a + b*sec(e + f*x)**2)**(5/2), x)

Maxima [F]

\[ \int \frac {\cos (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\cos \left (f x + e\right )}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="maxima")

[Out]

integrate(cos(f*x + e)/(b*sec(f*x + e)^2 + a)^(5/2), x)

Giac [F]

\[ \int \frac {\cos (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\cos \left (f x + e\right )}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\cos \left (e+f\,x\right )}{{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{5/2}} \,d x \]

[In]

int(cos(e + f*x)/(a + b/cos(e + f*x)^2)^(5/2),x)

[Out]

int(cos(e + f*x)/(a + b/cos(e + f*x)^2)^(5/2), x)